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1 Introduction

How do firms’ financial conditions influence the transmission of monetary policy to investment?

Since the seminal work of Bernanke et al. (1999), this question has gained importance in

macroeconomic analysis, where now it is well understood that developments in credit market

conditions can affect the real economy. Given the large heterogeneity in financial conditions

across firms, a natural question is how this heterogeneity affects the transmission of monetary

shocks. To answer this question, it is sometimes assumed in empirical and theoretical work

that a change in the financial condition of firms would necessarily trigger a response in firm

investment, and that this response is proportional to how financially constrained the firm is.1

Although appealing for its simplicity, in reality the transmission mechanism across firms is

likely to be more complex than this due to a variety of frictions that affect firms’ decisions.

One of the possible reasons is the presence of capital reallocation constraints that may impede

firms to freely rebalance their portfolios (Leary and Roberts, 2005). It is then possible that

some firms do not react at all to changes in market interest rates whenever this constraint is

binding.

This paper provides new insight on this question by relaxing assumptions on how the

effect of monetary shocks varies across firms. To achieve this, I consider a non-parametric

estimation of the transmission mechanism based on a variation of the random forest model

(Breiman, 2001). This approach gives more information on what types of firms react to

monetary shocks, where here firms are defined by their financial position, and how they

react—by how much their investment responds to monetary shocks. Both of these insights

are valuable for policy analysis as well as economic modelling more generally.

I revisit the empirical application in Ottonello and Winberry (2020) on the role of financial

heterogeneity in the investment channel of monetary policy, and show that the more flexible

estimation proposed in this paper uncovers important nonlinearities in the transmission

mechanism. In Ottonello and Winberry (2020), the authors proxy firms’ financial position

with either leverage or distance-to-default (a measure proposed in Gilchrist and Zakrajsek,

1From the theoretical side, see for example Zetlin-Jones and Shourideh (2017) and Ottonello and
Winberry (2020). From the empirical side, specifications using interaction terms to capture heterogeneous
effects implicitly assume a linear relation between the effect of shocks and firms’ financial conditions.
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2012), and consider in their main empirical exercise the universe of US non-financial firms

between 1990Q1 and 2007Q4. They find that less risky firms, either firms that are one

standard deviation less indebted than the average firm in the sample or firms that are one

standard deviation more distant to default, tend to increase their investment by more given

an unexpected decrease in interest rates.

In this context, I estimate non-parametrically the dynamic effects of monetary policy on

investment for firms with distinct levels of leverage or distance-to-default. First, the results

confirm the findings that firms with lower leverage and higher distance-to-default react more

to the monetary shock on impact, and that the evidence of heterogeneity in the response

disappears as we approach horizons larger than four quarters. For instance, firms at the

5th percentile of leverage or at the 95th percentile of distance-to-default present a positive

significant semi-elasticity of investment of more than 4 on impact, while higher risk firms

present an insignificant (or less pronounced) response.

Second, and more importantly, my estimations suggest that there exists a threshold in

the level of firm risk above which monetary policy is much less effective. Specifically, the

effect of the shock on firm investment at short horizons is only found to be positive and

significant for firms below the first quartile of leverage, or firms above the third quartile of

distance-to-default. Beyond such thresholds, that is for the 75% of firms in the sample with

higher risk, there is no evidence that the effect of monetary policy varies with firm risk at all,

and that the transmission to these firms is generally not significant. Crucially, this implies

that the effect of monetary policy is different from what is predicted from more common

specifications, in which the effect of the shock is assumed to be a linear function of firm risk.2

My estimations predict that monetary policy is particularly less effective on middle-risk firms

(firms between the first and third quartile of leverage or distance-to-default) than previously

thought.

Although different frictions could help rationalize these findings, plausible reasons include

the presence of binding capital reallocation constraints and/or fixed costs for issuing new

debt. These features create a disincentive to engage in borrowing for firms with low enough

2Common specifications refer to the general class of regressions that include an interaction between the
monetary policy shock and the firm-level variable used as proxy for firm risk.
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net worth, which in turn makes the investment decisions of these firms indifferent to changes

in borrowing rates triggered by monetary policy shocks. Capital reallocation frictions in

particular are incorporated in e.g. Khan and Thomas (2008, 2013), and Koby and Wolf (2020)

that study the dynamics of firm level investment and its aggregate implications.

A second contribution of this paper is to provide a novel methodology to estimate

heterogeneous responses in a local projection framework. The methodology can be thought as

a nonlinear extension of local projections (LPs; Jorda, 2005), which have become increasingly

popular to estimate impulse response functions in macroeconomics. Local projections are

very appealing for their simplicity, as they consist of a sequence of linear regressions of a

future target variable on a current structural shock, each at a different prediction horizon. In

its traditional version, LPs assume a homogeneous response to the shock across observations—

in this context across firms. This paper generalizes local projections to accommodate

heterogeneous impulse responses, i.e. responses that vary across firms, and refers to this

new method as heterogeneous local projections (HLPs). In practice, this is achieved by

conditioning the impulse response of firm investment on firms’ default risk (e.g. leverage or

distance-to-default). I show in simulations that HLPs present in general better coverage than

common regression-based specifications in capturing heterogeneous effects across horizons.

Additionally, HLPs can accommodate several identification schemes commonly applied in

empirical work, including identification through controls and instrumental variables. Although

this application only considers a single conditioning variable at a time, HLPs can also be

estimated in higher dimensions, which is an important advantage of the method compared to

other non-parametric techniques.

As mentioned above, the estimation of HLPs builds on a variation of the random forest

(Breiman, 2001). Random forests are based on recursive partitioning, that is a model

that sequentially partitions the data until “small enough” subsamples are reached. In the

context of HLPs, we seek to exploit this recursive partitioning scheme until we find small

enough subsamples in which the effect of the shock becomes homogeneous across firms. This

means estimating a standard local projection of firm investment on a monetary shock in

each subsample determined by the recursive partitioning scheme. Importantly, the data is

partitioned according to the set of conditioning variables stipulated by the researcher, in this
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case firm risk. This process then yields local projection coefficients, or impulse responses,

that depend on firm risk, which is the object of interest of the paper. In the context of

random forests, we use decision trees for recursive partitioning (Breiman et al., 1984). Because

individual trees tend to have high variance, we estimate instead a large number of trees and

average their predictions, which loosely defines the random forest model.3

Related work. This paper relates to several topics of research in macroeconomics and

econometrics. First, it relates to the broad literature interested in the heterogeneous effects of

shocks in the economy. It connects more closely to papers studying how the effect of monetary

policy varies across firms, for example according to size (Gertler and Gilchrist, 1994), age

(Cloyne et al., 2018), liquidity (Jeenas, 2019), or default risk (Ottonello and Winberry, 2020).

The paper extends this literature by proposing a novel estimation strategy that relaxes

assumptions on how the effect of shocks varies across firms, providing new insights on the

transmission mechanism. In particular, the paper extends the empirical analysis in Ottonello

and Winberry (2020) and shows that there exists a threshold in the level of firm risk above

which monetary policy is much less effective.

The paper also contributes to the literature of local projections for impulse response

estimation in macroeconomics (Jorda, 2005; Ramey, 2016; Stock and Watson, 2018; Plagborg-

Moller and Wolf, 2021). In this context, the paper relates more closely to studies that propose

nonlinear specifications of local projections, of which a prominent example is state-dependent

LPs. These include parametric specifications of local projections, using e.g. smooth transition

functions (Auerbach and Gorodnichencko, 2013; Tenreyro and Thwaites, 2016) or threshold

functions (Ramey and Zubairy, 2018), as well as semi-parametric specifications (Angrist

et al., 2018 use propensity score methods). More recently, Cloyne et al. (2023) proposed a

formal framework to study heterogeneous effects of an intervention across time and states of

the economy in a local projection framework with interaction terms. Although the method

accommodates a large number of applications in economics, the implied responses are linear

on the conditioning information: an LP with an interaction between a monetary shock and

the output gap assumes that the effect of monetary policy on the target is linear with respect
3This averaging process yields estimates with lower variance without increasing the bias. I refer to Hastie

et al. (2001) for a more detailed introduction of trees and random forests.
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to the state of the economy. One of the main innovations of the current paper is precisely to

relax this linearity assumption of the response with respect to conditioning variables.

This paper differs from the above literature in two important ways. First, HLPs depart

from the time series setting and explore both cross-sectional and time variation to estimate

the impulse responses in a panel data framework, allowing for potentially different responses

across individuals or firms, as opposed to macroeconomic conditions. Second, HLPs are

non-parametric, so they accommodate general forms of nonlinearities in the response of

shocks with respect to the conditional information. In this context, the paper more closely

connects to Mumtaz and Piffer (2022) that consider a non-parametric estimation of local

projections using Bayesian additive regression trees, although in a time series setting.

Finally, the paper connects to the growing literature on heterogeneous treatment effect

estimation using random forests (Green and Kern, 2012; Hill and Su, 2013; Athey and

Imbens, 2016; Athey and Wager, 2018; Athey et al., 2019; Friedberg et al., 2021). The

paper contributes to this literature by adapting the framework to the context of impulse

response estimation and by accommodating the use of panel data. The specific random

forest used in HLPs’ estimation is an extension of causal forests (Athey and Wager, 2018)

shown to be consistent and asymptotically Gaussian. I explore the similarities between

treatment effect estimation and impulse response estimation to borrow the structure of causal

forests for heterogeneous impulse response estimation, provided standard assumptions on

the exogeneity of the monetary shock. This strategy has the advantage of disciplining the

asymptotic properties of the HLPs’ estimator. From a practical perspective, this type of

random forest is as simple to calibrate as traditional forests in that almost no hyperparameter

tuning is required. As in causal forests, I apply the jackknife variance estimator for the

construction of confidence intervals following Efron (2014) and Efron et al. (2014). An

important difference between HLPs and causal forests is the data type, where the latter

assumes i.i.d. samples while HLPs are estimated using dependent data (panel). I rely on the

theoretical foundations from Davis and Nielsen (2020), who prove consistency of forests built

on nonlinear autoregressive processes, to estimate HLPs in a panel setting.
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Outline. The paper is structured as follows. Section 2 defines heterogeneous local projections

and compares it to alternative methods. Section 3 describes the estimation procedure of HLPs.

Section 4 provides a simulation study of HLPs, comparing the method with regression-based

specifications. Section 5 extends the empirical application in Ottonello and Winberry (2020)

and applies HLPs to understand the role of firms’ financial conditions in the transmission of

monetary policy, and Section 6 concludes.

2 Heterogeneous Local Projections

This section defines heterogeneous local projections as a non-parametric generalization of

local projections (Jorda, 2005). The goal is in estimating the impulse response to a shock

of interest as a flexible function of observables. I start the section by defining the object of

interest and later discuss comparisons with other methods commonly used, highlighting some

advantages of Heterogeneous Local Projections.

2.1 Definition

I assume the researcher has access to the data Y = (Yit,Wt,Xit,Cit) for i = 1, ..., N denoting

individuals or firms, and t = 1, ..., T . Consider first the panel local projection where the

interest is in estimating the response of the individual-level variable Yi,t+h after an impulse of

Wt,

Yi,t+h = bh Wt +
P∑

j=1

γh
j Cj,it + δhi + ui,t+h, h = 0, ..., H. (1)

Cit = (C1,it, ..., CP,it)
′ is a P ×1 vector that serves as a generic set of controls and may include

lags of the dependent variable Yit, lags of Wt, other individual-level variables denoted by the

K × 1 vector Xit, and macroeconomic controls. δhi is the individual fixed effect and ui,t+h

the prediction error. Note that in this model the impulse response bh captures the average

causal effect of Wt on the target across all observations it. Notice also that if one wants to

have a structural interpretation of bh, some additional assumptions would be required, for

instance having Wt to represent a “shock” variable, or through a careful selection of control

variables (more on identification below).
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This paper assumes that the response bh at horizon h may vary depending on individual

characteristics. More precisely, I assume that the dynamic causal effect of shocks is a function

of the set Xi,t−1 of size K. The specification of interest therefore extends (1) to

Yi,t+h = bh(Xi,t−1) Wt +
P∑

j=1

γh
j Cj,it + δhi + ui,t+h, h = 0, ..., H, (2)

where bh(Xi,t−1) is a flexible function of Xi,t−1. I denote this specification Heterogeneous

Local Projections (HLPs) in reference to the concept of heterogeneous treatment effects

from the microeconometrics literature (Willke et al., 2012 and Powers et al., 2018 provide

surveys). Note that the conditioning implied by Xi,t−1 allows for potentially different effects

of Wt on (i) different individuals/firms, and on (ii) individuals/firms that changed over time.

Additionally, note that only the coefficient of Wt is assumed to change with Xi,t−1. This is a

simplification assumption. It emphasizes the interest in capturing heterogeneous effects with

respect to the variable Wt only, while being consistent with commonly used specifications

that assume a linear relation between the target and control variables.4

More formally, the object of interest is the horizon h-response evaluated at specific values

Xi,t−1 = x of individual characteristics, denoted as

bh(x) = E
[
bh(Xi,t−1) | Xi,t−1 = x

]
. (3)

This can be viewed as the average causal effect of Wt on the target for individuals with

characteristics similar to x, as the conditional expectation is taken with respect to observations

it that are “close” to x. The object bh(x) is referred as the heterogeneous impulse response

at x.

In this paper, I propose to estimate the responses {bh(x)}Hh=0 non-parametrically using a

modified random forest (Breiman, 2001). To bring some intuition to the functional form of

bh(x), consider the simple case where (i) the conditioning set is composed only by a single

4The decision of conditioning the response bh on the lagged values t − 1 of the set Xit, instead of
contemporaneous values, is to avoid endogeneity issues with respect to Wt, as is common in empirical work.
The number of lags in which to condition, however, is set to one only for simplification of exposition, and can
be extended as necessary.
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variable, e.g. firm leverage Xi,t−1, and (ii) the model consists of a single tree T with only two

splits. In this case, the heterogeneous impulse response at a given value x of firm leverage,

for horizon h and {c1, c2} ∈ R, can be written as

b̂hT (x) = b̂h1 1 [x ≤ c1]1 [x ≤ c2] + b̂h2 1 [x > c1]1 [x ≤ c2] + b̂h3 1 [x > c2] , (4)

where b̂h1 , b̂
h
2 , b̂

h
3 are responses from the local projection (1) over subsamples defined by x and

the threshold values c1 and c2. For example, b̂h1 is the estimated response for the subsample

{it | Xi,t−1 ≤ c1 ∪ Xi,t−1 ≤ c2}. In this example, it is straightforward to see that the tree

effectively conditions the response to be a function of firm leverage. If the conditioning set is

empty, the tree prediction recovers the unconditional response in (1) for all Xi,t−1 = x.

2.2 Advantages of HLPs and comparison with other methods

The idea of conditional impulse response functions is not new and relates to the broad

literature on nonlinear models in macroeconomics. A common example are state-dependent

models, where the effect of shocks is assumed to be different across the business cycle (see

e.g. Auerbach and Gorodnichencko, 2013 and Ramey and Zubairy, 2018 for applications

on the effects of fiscal policy, and Tenreyro and Thwaites, 2016 and Angrist et al., 2018 for

monetary policy applications). I depart from this literature by assuming that shocks can have

different effects across the cross-section of individuals/firms, and explore both cross-sectional

and time variation in individual characteristics to compute impulse responses in a panel data

setting. The model allows however for more restricted settings that would condition the

impulse responses to depend on cross-sectional variation only or on time variation only.

HLPs are also related to the concept of generalized impulse response functions (GIRFs),

commonly applied in the context of nonlinear models (Gallant et al., 1993; Koop et al., 1996;

Gourieroux and Jasiak, 2005). Assuming a dataset of the type Y = (Yit,Wt,Xit), the causal

effect on Yi,t+h of a unit intervention in Wt conditional on Xi,t−1 assuming specific values x

is defined as

E
[
Yi,t+h | Wt = 1,Xi,t−1 = x

]
− E

[
Yi,t+h | Wt = 0,Xi,t−1 = x

]
. (5)
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In this paper, we assume that Yi,t+h follows the model in (2), reproduced below abstracting

from controls and fixed effects without loss of generality,

Yi,t+h = bh(Xi,t−1) Wt + ui,t+h.

The above model implies that E
[
Yi,t+h | Wt = 1,Xi,t−1 = x

]
− E

[
Yi,t+h | Wt = 0,Xi,t−1 =

x
]
= bh(x), provided that E

[
ui,t+h | Wt,Xi,t−1

]
= 0, or equivalently Wt is exogenous

conditional on Xi,t−1 (Section 3.2 discusses exogeneity assumptions in more details). We

can then interpret the object bh(x) as the generalized impulse response at x given model (2).

GIRFs and HLPs differ however in some aspects. First, GIRFs are commonly estimated

in the time series domain, while HLPs are designed to accommodate panel data. Second, in

HLPs only the coefficient of the shock varies (nonlinearly) over the conditioning set. GIRFs

can be less restrictive in this respect and may assume a general nonlinear model. The simpler,

more restrictive, structure of HLPs makes the comparison with standard approaches for

the estimation of impulse responses with panel data more direct, such as regression-based

specifications. This restriction however can be easily relaxed such that all coefficients in (2)

would vary with respect to the conditioning set (see Section 3.1 for more details). Finally,

GIRFs have been widely used to detect asymmetric effects of policy by conditioning the

responses on the size or sign of shocks, a conditioning set of the form Xt−1. This paper

emphasizes responses that vary in the cross-section as well as across time by conditioning on

a specific firm characteristic Xi,t−1 in a framework that accommodates panel data. However

it is also possible to study asymmetric effects by conditioning responses on Xt−1, similarly to

GIRFs, as long as the sign or size of past shocks are not affected by the current policy shock

Wt (see Assumption 2 in Section 3.2).

Compared to common methods that test for heterogeneity of responses across individuals,

such as regressions with interactions or in groups, HLPs relax assumptions on how shocks

vary in the cross-section. As an example, consider expanding the baseline local projection in

(1) to include an interaction between the shock Wt and an individual characteristic of interest
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Xi,t−1 ∈ R,

Yi,t+h = ah (Xi,t−1 ×Wt) + bh Wt +
P∑

j=1

γh
j Cj,it + δhi + ui,t+h, h = 0, ..., H.

Alternatively, one could define ex-ante G groups of individuals and run

Yi,t+h =
G∑

g=1

bhg 1[Xi,t−1 ∈ g] Wt +
P∑

j=1

γh
j Cj,it + δhi + ui,t+h, h = 0, ..., H.

In the first case, the researcher assumes that the effect of Wt is linear on X, and in the second

that it is constant within each group g (see Section 4 for a more detailed discussion). HLPs

generalize the above methods by relaxing these restrictions, and estimate instead the flexible

function bh(Xi,t−1) from (2).

Heterogeneous local projections can also be related to quantile local projections and

interpreted as a special case of the latter. To be more concrete, let Qit(τ) = Qit be the

quantile τ of a target Yit. Borrowing from the general impulse response interpretation of

HLPs from (5), we can similarly write the response of quantile Qit of Yit at horizon h to a

unit impulse of a specific shock of interest Wt from the system, conditional on covariates Xit,

as

E
[
Qi,t+h | Wt = 1,Xit

]
− E

[
Qi,t+h | Wt = 0,Xit

]
.

Hence, while quantile analysis centers around distributional aspects of the target Yit, HLPs

focus on the mean of Yit.

HLPs can also accommodate several identification schemes usually encountered in macroe-

conomic applications. Specifically, it is compatible with (i) identification through exogenous

shocks Wt = εt, where the vector of controls Cit may be empty, (ii) identification through

controls, where the structural shock can be recovered through the inclusion of an appropriate

set of controls, in which case one would regress Yi,t+h on the endogenous variable Wt and

controls Cit, and (ii) identification through instrumental variables (IV) where a suitable

instrument Zt for the shock is available, in which case a first-stage estimation would regress

Wt on Zt (and controls), and a second-stage would regress Yi,t+h on the fitted values of the
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first-stage (and controls). The forest model then recovers the heterogeneous responses by

computing the above steps on different subsamples as defined by a tree structure, as in e.g.

(4).

HLPs can also easily handle the common issues of serial correlation in the residuals that

arise in local projection estimation. Specifically, one can follow Olea and Plagborg-Moller

(2021) and disregard the need to correct for serial correlation in the residuals as long as the

local projection includes a sufficient number of lags of the variables of interest. Regarding

the panel structure of HLPs, the proposed variance estimator can be interpreted as a type

of sandwich estimator that accounts for heteroskedasticity and serial correlation within

individuals/firms in the same spirit as the robust variance matrix estimator proposed by

Arellano (1987). This is equivalent to cluster standard errors at the individual level in a

panel setting for each estimated horizon.

A paper closely related to my work is Mumtaz and Piffer (2022) that considers Bayesian

additive regression trees (BART) of Chipman et al. (2010) to estimate nonlinear local

projections in a time series specification.5 As random forests, BART is a non-parametric

method and in this context can accommodate general types of nonlinearities between the

conditioning information and the transmission of shocks. The main difference with the current

paper is that HLPs are designed to handle panel data applications and consequently can

detect heterogeneous responses of shocks across individuals or firms, while Mumtaz and Piffer

(2022) focus on time series applications.

From the practical side, HLPs are also relatively easy to estimate, as they are simply

an adaptation of the plain random forest available from standard implementations, such

as the scikit-learn library in Python, or the randomForest package in R. Importantly,

this adaptation preserves the attractiveness of random forests in that almost no tuning is

required.6 At a high level, the main differences with respect to standard random forests are

5In a forecasting experiment in Chipman et al. (2010), BART shows superior forecast performance
compared to random forests. I make two comments: (i) the focus of this paper is on statistical inference
rather than forecasting, and the performance of the specific random forest used in HLPs for impulse response
estimation is evaluated in simulation experiments in Section 4, (ii) the authors suggest using BART with
a default set of parameters as a ready-to-use method, but the performance of the random forest in their
experiment is very similar to the former (I note that the random forest is only slightly tuned).

6In particular, here we focus on fully grown trees, while other parameters are ex-ante appropriately scaled
or fixed.
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(i) the actual estimate at the subsample level (here we estimate a local projection instead

of estimating the sample mean), (ii) a concept called honesty (Athey and Wager, 2018), in

which different samples are used for either estimating the sample splits or computing the

impulse responses in each subsample, but not both, and (iii) a few restrictions on how the

trees are estimated, for example it is imposed that the bootstrap subsampling rate be scaled

appropriately with respect to the total number of cross-sectional units (as discussed below).

3 Estimation of HLPs

In this section, I discuss why tree methods are appealing for the estimation of heterogeneous

local projections, and describe the estimation strategy of HLPs based on causal forests

proposed in Athey and Wager (2018).

From a pure methodological perspective, it is natural to think of HLPs as a local linear

regression, that is a model that fits a linear regression over “small” subsamples of the data.

This is because, for given values of individuals’ characteristics Xi,t−1 = x, the heterogeneous

local projection in (2) becomes a linear model. Common non-parametric approaches to

estimate these type of models are k-nearest neighbors, kernel smoothing, or series methods.

This paper takes a different perspective and considers estimating (2) using a modified random

forest, and interprets it as a local linear regression with adaptive weights as in Athey and

Wager (2018), Athey et al. (2019) and Friedberg et al. (2021).

The forest estimation adopted in this paper departs from the original random forest version

(Breiman, 2001) in many ways. In particular, I follow the adaptations proposed in Athey and

Wager (2018) (AW henceforth) such that the resulting model inherits desirable statistical

properties. In particular, it disciplines the variance of the estimator while controlling the

bias. The current model however differs from AW regarding the type of data employed and

the specification at the subsample level. In what follows, I describe the estimation in more

detail (Section 3.1), and highlight the way this model can be viewed as an extension of AW

(Section 3.2). For a more general introduction of random forests and regression trees, I refer

to Hastie et al. (2001).
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3.1 Trees and forest estimation

We seek a model that creates subsamples of the data and estimates a local projection in

each of these subsamples. A tree model is particularly suited for this purpose as per its

data partitioning design. Given an initial data set, the tree partitions the data sequentially

into binary splits until specific stopping conditions are met. Trees are however intrinsically

noisy, as slightly different data points can lead to substantially different partitions due to

their hierarchical nature. Trees are then usually combined in an ensemble fashion, i.e. into

forests, so that their intrinsic variability is averaged out, yielding a more stable model. In

this context I estimate random forests, following the adaptations in AW, that yield estimates

of the impulse responses bh(x), for h = 0, ..., H, with desirable statistical properties.

In this section I consider a data set of the form (Yit,Wt,Xit). In case of a non-empty

vector of controls Cit, we can retrieve this data format by orthogonalizing the variables with

respect to Cit, as discussed below. Assuming we have access to observations i = 1, ..., N and

t = 1, ..., T , consider grouping them into output-input pairs for each horizon h,

YNT = {(Yi,t+h,Wt,Xi,t−1)}i=1,...,N ;t=1,...,T .

The interest is in growing a tree that estimates heterogeneous local projections using the

data YNT , where heterogeneity is measured in terms of the set Xi,t−1. In practice, this is

achieved by sequentially finding splits of YNT with respect to some variable in Xi,t−1 that

minimize the squared error of the unconditional panel local projection in (1), reproduced

here for convenience:

Yi,t+h = bh Wt +
P∑

j=1

γh
j Cj,it + δhi + ui,t+h, h = 0, ..., H.

Note that in case of a non-empty vector of controls, there are in principle two options: (i)

one could run (1) over different splits of the data YNT , yielding coefficients that are functions

of observables Xi,t−1 = x, that is bh(x) and γh
j (x), or (ii) one could orthogonalize both the

dependent Yi,t+h and the shock Wt variables with respect to Cit in a first step, and then run

(1) over splits of (an orthogonalized version of) YNT such that only bh(x) is estimated to
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depend on Xi,t−1 = x. In both cases, the within estimator is applied to eliminate fixed effects.

I proceed with the latter option to allow only the coefficient of the shock to vary over Xi,t−1,

as it facilitates the comparison with linear specifications intended to capture heterogeneous

effects of shocks, as discussed previously. I therefore estimate HLPs using the transformed

data Y⊥
NT = {(Y ⊥

i,t+h,W
⊥
t ,Xi,t−1)}i=1,...,N ;t=1,...,T , with Y ⊥

i,t+h = Yi,t+h − E [Yi,t+h | Cit] and

W⊥
t = Wt−E [Wt | Cit], where the expectation terms are estimated assuming a linear model.7

Consider a variable j ∈ Xi,t−1 and a splitting value c, and define the pair of subsamples,

L1(j, s) = {it | Xj
i,t−1 ≤ c} and L2(j, c) = {it | Xj

i,t−1 > c}.

Departing from the full data set, and given a random draw j over Xi,t−1 (such that each

variable is selected with probability π = 1/K), we seek the splitting value c that solves

min
c

{
min
bh1

∑
{it: Xj

i,t−1∈L1}

[(
Yi,t+h − Ȳi

)
− bh1

(
Wit − W̄i

)]2
+

min
bh2

∑
{it: Xj

i,t−1∈L2}

[(
Yi,t+h − Ȳi

)
− bh2

(
Wit − W̄i

)]2}
.

(6)

Here Ȳi and W̄i denote averages over time and the demeaning serves to eliminate the individual

fixed effects. I note that the indexing of Wt over i’s is an abuse of notation to emphasize

that the averaging is performed for each cross-sectional unit.

This process is recursive, and the tree continues growing from a given subsample until

either of the following conditions holds: (i) the total number of observations it reaches a

minimum value of k, or (ii) the number of cross-sectional units i reaches a minimum fraction

ω of the number of cross-sectional units in the previous subsample. The first condition is

standard in random forest implementations, where here we allow the trees to be fully grown

while guaranteeing a minimum number of observations k in each subsample.8 The second

condition is more specific and intuitively guarantees that the splits are not too imbalanced.

7Note that the linear model used to center the outcome and shock variables is consistent with the linear
assumption from (2).

8In Section C in the appendix, I show that the pointwise estimates of forests built on trees of different
depths k are very similar and do not change the qualitative interpretation of results.
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Following AW, ω is fixed at 0.2.

Given an estimated tree T , we identify the subsample LT (x) containing the individual

characteristics of interest x, and compute the impulse response estimate as

b̂hT (x) =

∑
{it: Xi,t−1∈LT (x)}

(
Yi,t+h − Ȳi

) (
Wit − W̄i

)∑
{it: Xi,t−1∈LT (x)}

(
Wit − W̄i

)2 . (7)

In turn, the forest estimate is defined as the average impulse response estimate at x over

many trees,

b̂h(x) =
1

|T |
∑
T

b̂hT (x), (8)

where |T | is the number of trees in the forest. I set |T | = N following Efron et al. (2014)

who show that this is sufficient to guarantee a negligible Monte Carlo approximation error.

(Note that I use N instead of NT as the relevant number of observations for the bootstrap,

as discussed below).

As usual in bagging techniques, each tree is estimated on a bootstrap sample of the

original data. The typical bagging approach applied to random forests would resample from

YNT = {(Yi,t+h,Wt,Xi,t−1)}i=1,...,N ;t=1,...,T , with each sampled row (Y ∗
i,t+h,W

∗
t ,X

∗
i,t−1) being

randomly chosen with replacement from YNT . Note that this bootstrap method samples

from the original data and always selects the independent and dependent variables in pairs

(hence referred to as pairwise bootstrap). By resampling from the data directly, as opposed to

ressampling from the residuals, this method accommodates general forms of heteroskedasticity

(MacKinnon, 2006).

In this paper I rely on a few adaptations of the bagging process to account for the use of

panel data as well as to inherit statistical properties for the heterogeneous impulse response

following AW. First, to deal with the time dependence, I draw randomly across cross-sectional

units only, and collect all the time periods corresponding to the sampled units. This technique

is simple to implement and it tends to improve the approximation properties of bagging

compared to e.g. block bootstraping (Kapetanios, 2008). It also permits the use of the

jackknife for variance estimation, as discussed below. Note that by resampling across the

cross-section, this bootstrap method preserves any form of within-units error correlations.
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Second, I draw subsamples without replacement of size s < N , where s scales appropriately

with respect to N .9 Finally, I rely on the concept of honesty during tree estimation, found

to be crucial to establish centered asymptotic normality for the heterogeneous treatment

effect estimator proposed in AW. The idea is to separate tree construction—how to split

the data—from tree prediction—the estimation of impulse responses at the subsample level.

Each bootstrap sample of size s is first split into two equal parts, I and J (along with their

respective time periods). The tree then employs sample J to construct the splits using

(6), and sample I to estimate the impulse responses in (7), where the stopping conditions

governed by k and ω are applied on the I sample. AW show that honest trees can avoid bias

at the edges of the X-space, as opposed to traditional regression trees that are pointwise

biased in these cases.

It is easy to see the similarity between the forest estimator for the heterogeneous impulse

response bh(x) and a natural alternative that uses a local linear model with a pre-specified

kernel Kit(x). Given (7) and (8), the forest estimate can be written as

b̂h(x) =

∑
i

∑
t αit(x)

(
Yi,t+h − Ȳi

) (
Wit − W̄i

)∑
i

∑
t αit(x)

(
Wit − W̄i

)2 . (9)

The alternative kernel-based estimate takes the same form as above, except with weights Kit(x)

instead of αit(x). Here the weights are defined as αit(x) =
1
|T |

∑
T 1 [Xi,t−1 ∈ LT (x)] /|LT (x)|

(see Appendix A for the derivation), and can be interpreted as the relative frequency in which

observation it falls into the same subsample as observation x across trees. In this perspective,

the methods are similar, as both weighting functions relate to a concept of distance between

observations. While both methods have its merits, forest weights are adaptive in that they

depend on the strength of the signal across the conditioning set X. This means that if a

given conditioning variable Xi,t−1 ∈ Xi,t−1 largely explains the difference in responses across

individuals, the forest is able to detect it quickly and create subsamples accordingly. As

a consequence, forests can in general handle larger conditioning sets compared to kernel

methods that are generally estimated in two or three dimensions.10

9Following AW, I set s = Nγ , with γ = 1−
(
1 + π−1log(ω−1)

log(1−ω)−1

)−1

< 1.
10In kernel regressions, the convergence rate of the estimator slows as the dimension of the conditioning

set increases (Hansen, 2022).
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Variance estimation. As in AW, I consider the infinitesimal jackknife (IJ) variance

estimator developed by Efron (2014) and Efron et al. (2014) to compute the variance of

b̂h(x). The IJ variance estimator, also known as the “nonparametric delta method”, is an

alternative to the ordinary jackknife (see Efron, 1982) in that we study the statistic of interest

by changing each observation by an infinitesimal amount. It turns out to be appropriate in

this setting since bh(x) is a smooth function of x. One of the advantages of jackknife methods

in the context of forests is that it relies on the same bootstrap samples used to compute the

forest itself, therefore economizing in computational time.

Let JiT be an indicator of whether observation i is in the bootstrap sample of tree T , and

let b̂hT (x) be the tree T estimate at x. Then the variance of b̂h(x) can be computed as“VIJ

Ä
b̂h(x)

ä
=

N(N − 1)

(N − s)2

N∑
i=1

‘Covi
î
JiT , b̂

h
T (x)

ó2
, (10)

where the covariance is applied over the set of trees in the ensemble. The term in front of

the summation is a correction for subsampling without replacement, where I recall s is the

subsample size and N the total number of cross-sectional units.

It is worth mentioning the relation of jackknife variance estimators with other, more

common variance estimators in econometrics. Efron (1982) shows that the IJ can be expressed

as the popular heteroskedasticity-robust Eicker–Huber–White variance estimator. In the

same spirit, MacKinnon and White (1985) show that the ordinary jackknife is asymptotically

equivalent to the heteroskedasticity-robust estimator, and superior in small samples. Here,

the estimator in (10) is a variation from the IJ proposed in Efron et al. (2014) in that

the bootstrap samples used to construct the trees, and consequently to construct the IJ

estimator, are randomly drawn across cross-sectional units only, where I collect all time steps

from each selected unit. This guarantees independence across draws, as long as we assume

no cross-correlation among units, and preserves the asymptotic properties of the jackknife

estimator. In other words, each unit i can essentially be interpreted as a cluster consisting of

several observations of that same unit over time. This extension to panel data is similar in

spirit to the robust variance matrix estimator proposed by Arellano (1987), robust to any

form of heteroskedasticity or serial correlation within units. The later is often interpreted as
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a cluster-robust variance estimator when each unit represents a cluster.

3.2 Tree construction and relation to Athey and Wager (2018)

In AW, the authors are interested in estimating a heterogeneous treatment effect, where they

assume a randomly assigned binary treatment W conditional on covariates X. They define

the heterogeneous treatment effect at X = x as τ(x) = E
[
Y (1) − Y (0) | X = x

]
, where Y (1)

and Y (0) are the responses with and without treatement respectively. In this context, they

construct trees that estimate treatment effects in each subsample, and the paper further

establishes asymptotic guarantees for forests based on this type of trees. I hereby discuss

how to adapt this framework in the context of impulse response estimation and highlight the

important assumptions for the present application.

First, I rely on the analogy between treatment effect estimation as commonly defined in

microeconomics and impulse response estimation as studied in macroeconomics. As argued

in Stock and Watson (2018), the above concepts can be regarded as equivalent as long as

we assume a certain exogeneity condition that would identify the macroeconomic shock of

interest, here expressed by the variable Wt. In the present context, such equivalence implies

that we can relate the impulse response recovered from (1) in each subsample of the tree to

the treatment effect estimated in the same fashion in AW. For our purposes, two assumptions

of model (2) are needed to grant causal meaning to bh(Xi,t−1), as defined below.

Assumption 1 (Conditional exogeneity.) Consider the HLPs’ specification in (2), and

assume that the conditioning set Xi,t−1 is contained in Cit, that is Xi,t−1 ⊂ Cit.11 We say

that Wt is exogeneous conditional on Cit if

E
[
ui,t+h | Wt,Cit

]
= 0, for h = 0, ..., H.

This assumption is equivalent to unconfoundedness (also known as selection on observables)

in the context of treatment effect estimation, since they both imply random assignment of

the treatment or shock: the treatment is randomly assigned across units i, or equivalently the

macroeconomic shock Wt is randomly assigned over time, after conditioning on observables
11This is the case in the empirical application.
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Cit. Assumption 1 is also similar to stating that Wt is predetermined given Cit, in the sense

that Wt is allowed to be correlated with past errors, but not present or future errors, while

holding Cit fixed.

Attaching causal meaning to bh(Xi,t−1) also depends on the relationship between the

policy intervention Wt and the conditioning set Xi,t−1 since the response to Wt varies with

Xi,t−1 by definition in HLPs. In recent work, Gonçalves et al. (2024) study the validity of

the local projection estimator when the response is allowed to depend on the state of the

economy in a time series setting. They show that, assuming a population impulse response

as in (5), the LP estimator only recovers the true response function when the state of the

economy is exogenous with respect to macroeconomic shocks. We will assume a slightly

weaker assumption than exogeneity here which is nonetheless sufficient to interpret bh(Xi,t−1)

causally:

Assumption 2 (Hierarchical causality.) The intervention Wt is allowed to depend on

the conditioning set Xi,t−1, but the conditioning set Xi,t−1 is not allowed to depend on the

intervention Wt.

This is a common assumption in applied microeconomics (Fortin et al., 2011) as it ensures

that the stratification variable is not affected by the intervention. Note that this assumption

does not contradict Assumption 1 as the latter implies that, unconditionally, Wt may still

depend on Xi,t−1. In the current application, Xi,t−1 ∈ R is the financial position of firm i

at time t − 1, and given Assumption 1, Wt captures unanticipated monetary policy given

Cit. Assumption 2 is then plausible because current policy may be influenced by past firm

conditions but past firm conditions are likely not influenced by current or future monetary

policy disturbances (or their expectations).

The second important divergence between this application and the method developed

in AW is the data structure, where the later assumes i.i.d. samples. Several works have

studied the consistency properties of random forests assuming independent data (see e.g.

Biau, 2012; Scornet et al., 2015), as well as dependent data (Davis and Nielsen, 2020).

In particular, Davis and Nielsen (2020) prove consistency of forests built on nonlinear

autoregressive processes, hence providing theoretical justification for growing trees using
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e.g. YNT = {(Yi,t+h,Xi,t−1,Wt)}i=1,...,N ;t=1,...,T . Regarding the construction of confidence

intervals, the cross-sectional variation in panel data is convenient as it allows the use of the

jackknife estimator, as discussed above.

Finally, to guarantee consistency of the treatment effect τ(x), AW also need to assume

Lipschitz continuity of the conditional mean functions E
[
Y (1) | X = x

]
and E

[
Y (0) | X = x

]
.

In this setting, where an OLS is performed at the subsample level, this translates into assuming

continuity in x of the functions E[Yi,t+h | Xi,t−1 = x], E[Wt | Xi,t−1 = x], Cov[Wt,

Yi,t+h | Xi,t−1 = x], and Var[Wt | Xi,t−1 = x]. This continuity assumption is intuitive, as it

means assuming smoothness of impulse responses along individuals’ characteristics, and is

also standard for consistency results in the literature (Meinshausen, 2006; Biau, 2012; Scornet

et al., 2015; Wager and Walther, 2015).

4 Simulations

The object of interest in this paper is the heterogeneous impulse response at x, bh(x), which

intends to capture different responses to shocks across individuals or firms at horizon h, if they

exist. In this section, I carry out a simulation exercise to verify if (i) bh(x) is able to capture

responses that vary both linearly and nonlinearly with respect to individual characteristics,

and (ii) the confidence intervals of bh(x) based on (10) are asymptotically valid, which makes

inference possible.

The data generating process is

Yit = ρy Yi,t−1 + b0(Xit)×Wt + σi(1 + θ2)−1/2uit, with

uit = qit + θqi,t−1,

Wt ∼ iidN (0, 1), σ2
i ∼ iid(1 + X 2

1 )/2, qit ∼ iidN (0, 24),

(11)

for cross-sectional units i = 1, ..., N and t = 1, ..., T + 500, where the first 500 time periods

are discarded. ρy is fixed to 0.8 and θ is fixed to 0.4.

I consider three data generating processes for how the response to Wt varies across the

cross-section of individuals (and across time) according to some characteristic Xit ∈ R. I
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denote this response by b0(Xit) in (11) to emphasize that it is a function of the variable Xit

and that the implied estimation horizon is 0. Note that here there is no need to condition

b0(·) on lagged values of X, as usually implemented in empirical analysis to avoid endogeneity

concerns, since Wt is an independent process by construction. I consider the following three

cases:

i. Linear,

b0(Xit) = Xit + ϵit,

ii. Piecewise linear,

b0(Xit) =

0 + ϵit if Xit ≤ 0

Xit + ϵit if Xit > 0,

iii. Quadratic,

b0(Xit) = X2
it + ϵit,

with ϵit ∼ iidN (0, 8).

Finally, I model Xit as the sum of two components, the first accounting for variation

across individuals i and the second describing the dynamics:

Xit = µi + ξit, with

µi ∼ iidN (0, 3)

ξit = ρξ ξi,t−1 +
(
1− ρ2ξ

)1/2
υit, υit ∼ iidN (0, 1),

(12)

where I fix ρξ = 0.4. The above modelling choices are set to match moments of the data used

in the empirical application. Specifically, the time variation in Xit is set to be equal to the

variation in Wt, i.e. V ar(ξit) = V ar(Wt), while the cross-sectional variation in Xit is set to

be three times its time variation, i.e. V ar(µi) = 3 V ar(ξit).12

Consider iterating forward equation (11) until horizon h, assuming for illustration the

12Note that V ar(ξit) = 1.
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linear case, b0(Xit) = Xit, where here we abstract from the error ϵit to simplify notation,

Yi,t+h = ρh+1
y Yi,t−1 +

h∑
j=0

ρh−j
y Xi,t+j ×Wt+j +

h∑
j=0

ρh−j
y σi(1 + θ)−1/2ui,t+j. (13)

Note that when h = 0 we recover (11). The purpose of the simulations is to assess the ability

of HLPs to capture the true response of Yi,t+h to an impulse in Wt, denoted bh(Xit), for

horizons h = 0, ..., H. In the linear case above, the true response is given by bh(Xit) = ρhy Xit.

Similarly, for a piecewise linear process of b0(Xit), the true response is bh(Xit) = ρhy Xit

if Xit > 0, and bh(Xit) = 0 if Xit ≤ 0, and for a quadratic process, the true response is

bh(Xit) = ρhy X2
it.

A common way of testing for heterogeneous impulse responses with respect to individual

characteristics Xit is running local projections with interaction terms between the shock of

interest Wt and Xit (and controls). For the case where Xit ∈ R, the local projections are

Yi,t+h = ah (Xit ×Wt) + bh Wt +
P∑

j=1

γh
j Cj,it + δhi + ui,t+h, h = 0, ..., H. (14)

Note that the total effect of Wt on the target Yi,t+h is linear on X since δYi,t+h/δWt =

ah Xit + bh. One can then infer the response at a specific Xit = x simply by computing

b̂h,LP(x) = âh x+ b̂h. The object bh,LP(x), which corresponds to the heterogeneous impulse

response implied by model (14), is a natural benchmark to the forest-based impulse response

bh(x) of HLPs, which does not assume linearity with respect to X.

Alternatively, one can incorporate power terms to (14) to also accommodate non-linear

responses to Wt, as in

Yi,t+h = ah1 (Xit ×Wt) + ah2 (X2
it ×Wt) + ah3 (X3

it ×Wt)+

bh Wt +
P∑

j=1

γh
j Cj,it + δhi + ui,t+h, h = 0, ..., H.

(15)

In this case, the response at a specific Xit = x is b̂h,LP−AUG(x) = âh1 x+ âh2 x2 + âh3 x3 + b̂h.

Note that the regression with power terms encompasses all elements from the true DGP when
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h = 0 in both the linear and quadratic cases.

In the simulations, I therefore consider the following estimating equations: (i) HLPs from

(2), (ii) local projections from (14), and (iii) local projections augmented with quadratic and

cubic interactions terms from (15). All specifications control for one lag of the dependent

variable and one lag of the individual characteristic of interest, hence Cit ≡ (Yi,t−1, Xi,t−1)
′.

The standard errors of the local projection specifications are estimated using the robust

variance matrix estimator from Arellano (1987) which is equivalent to cluster at the unit

level. Standard errors of HLPs can be interpreted analogously, as discussed in Section 3.1.

Additionally, both the dependent and the shock variables are orthogonalized with respect to

the controls before the forest estimation (see Section 3.1 for more details). I consider k, the

minimum number of observations at the subsample level, to be 5% of the total number of

observations used for tree estimation.

For each data generating process considered for b0(Xit), I report the root mean squared

error, empirical coverage rates and the median length of confidence intervals. I also vary

the number of time periods, T = {15, 30, 45}, as well as the number of cross-sectional

units, N = {20T, 50T} (this grid of choices is applied to horizon 0, while I fix T = 30 for

higher horizons). I consider M = 300 Monte Carlo repetitions, where for each repetition I

evaluate the responses at 500 values of individual characteristics Xit. The reported simulation

statistics are computed over a total of 300× 500 = 150, 000 instances, and the nominal level

of confidence intervals is 0.90.

Table 1 reports the root mean squared error (RMSE), average coverage rates and median

lengths of confidence intervals for the heterogeneous impulse response b0(x) according to

the different cases considered, for horizon 0. Table 2 shows the same results for bh(x), with

h = 4, 8 and 12. I discuss a few number of findings.

First, HLPs recover well the true shape of the response at h = 0 and present relatively

better coverage independently of the DGP considered and sample size. At h = 0, although the

regression is the preferred specification for a linear DGP and the regression with power terms

for a quadratic DGP, HLPs still perform well in those cases, albeit with larger confidence

intervals. Note that for the piecewise linear DGP, both regressions show similar errors

(slightly smaller) than HLPs but significantly lower coverage for all horizons. This flexibility
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Table 1: Root mean squared error for the heterogeneous impulse response at horizon 0, along
with average coverage and median length of 90% confidence intervals, from a regression, a
regression augmented with power terms and HLPs on out-of-sample predictions.

Regression Regression w/ powers HLPs

DGP of b0(Xit) T N RMSE Cov Length RMSE Cov Length RMSE Cov Length

Horizon 0

Linear 15 20T 0.16 0.89 0.43 0.23 0.86 0.51 0.47 0.98 3.02
15 50T 0.10 0.88 0.28 0.15 0.87 0.33 0.38 0.98 1.96

Pcwise linear 15 20T 0.62 0.28 0.45 0.32 0.67 0.50 0.42 0.99 2.91
15 50T 0.61 0.18 0.29 0.26 0.52 0.32 0.30 0.99 1.87

Quadratic 15 20T 5.67 0.13 1.53 0.23 0.88 0.51 2.76 0.97 3.75
15 50T 5.70 0.08 0.98 0.16 0.87 0.32 2.70 0.95 2.43

Linear 30 20T 0.07 0.90 0.21 0.10 0.90 0.25 0.33 0.98 1.49
30 50T 0.05 0.91 0.13 0.07 0.89 0.16 0.30 0.97 0.98

Pcwise linear 30 20T 0.61 0.14 0.23 0.24 0.45 0.25 0.27 0.99 1.43
30 50T 0.60 0.09 0.15 0.22 0.26 0.16 0.22 0.98 0.90

Quadratic 30 20T 5.69 0.09 1.05 0.11 0.89 0.25 2.50 0.96 1.90
30 50T 5.71 0.06 0.68 0.07 0.88 0.16 2.52 0.93 1.39

Linear 45 20T 0.05 0.91 0.14 0.07 0.90 0.16 0.29 0.97 1.02
45 50T 0.03 0.89 0.09 0.05 0.88 0.11 0.28 0.95 0.69

Pcwise linear 45 20T 0.61 0.10 0.16 0.23 0.28 0.17 0.23 0.99 0.94
45 50T 0.60 0.06 0.10 0.22 0.17 0.11 0.20 0.98 0.60

Quadratic 45 20T 5.68 0.07 1.01 0.08 0.89 0.17 2.49 0.96 1.43
45 50T 5.64 0.04 0.55 0.05 0.87 0.11 2.43 0.91 1.14

Simulations of the regressions in (14) and (15), and HLPs in (2) at h = 0. I run 300 Monte Carlo
repetitions and evaluate the responses at 500 different values of Xit = x for each repetition. Reported
statistics are computed over 300 × 500 = 150, 000 instances. I consider k, the minimum number
of observations at the subsample level, to be 5% of the total number of observations used for tree
estimation.
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Table 2: Root mean squared error for the heterogeneous impulse response at horizons 4, 8
and 12, along with average coverage and median length of 90% confidence intervals, from a
regression, a regression augmented with power terms and HLPs on out-of-sample predictions.

Regression Regression w/ powers HLPs

DGP of b0(Xit) T N RMSE Cov Length RMSE Cov Length RMSE Cov Length

Horizon 4

Linear 30 20T 0.65 0.21 0.32 0.66 0.25 0.38 0.70 0.83 1.97
30 50T 0.65 0.14 0.20 0.65 0.17 0.24 0.68 0.67 1.22

Piecewise linear 30 20T 0.49 0.52 0.31 0.49 0.55 0.37 0.53 0.91 1.94
30 50T 0.49 0.44 0.20 0.47 0.51 0.24 0.49 0.84 1.22

Quadratic 30 20T 2.66 0.13 0.35 2.17 0.23 0.40 2.34 0.67 2.08
30 50T 2.66 0.08 0.23 2.18 0.15 0.26 2.34 0.55 1.31

Horizon 8

Linear 30 20T 0.37 0.37 0.33 0.39 0.44 0.39 0.43 0.94 1.85
30 50T 0.36 0.21 0.21 0.37 0.27 0.24 0.39 0.84 1.15

Piecewise linear 30 20T 0.27 0.64 0.33 0.30 0.67 0.39 0.34 0.93 1.86
30 50T 0.27 0.54 0.20 0.28 0.58 0.24 0.30 0.92 1.14

Quadratic 30 20T 1.21 0.21 0.34 1.27 0.33 0.40 1.26 0.74 1.88
30 50T 1.20 0.15 0.22 1.24 0.27 0.26 1.24 0.65 1.18

Horizon 12

Linear 30 20T 0.21 0.69 0.35 0.25 0.76 0.42 0.28 0.99 1.76
30 50T 0.18 0.55 0.23 0.20 0.64 0.27 0.22 0.98 1.13

Piecewise linear 30 20T 0.18 0.79 0.35 0.23 0.82 0.42 0.26 0.99 1.77
30 50T 0.14 0.70 0.23 0.17 0.75 0.28 0.19 0.99 1.14

Quadratic 30 20T 0.52 0.44 0.36 0.58 0.56 0.43 0.59 0.88 1.80
30 50T 0.52 0.29 0.23 0.57 0.43 0.27 0.56 0.79 1.12

Simulations of the regressions in (14) and (15), and HLPs in (2) at h = 4, 8, 12. I run 300 Monte
Carlo repetitions and evaluate the responses at 500 different values of Xit = x for each repetition.
Reported statistics are computed over 300 × 500 = 150, 000 instances. I consider k, the minimum
number of observations at the subsample level, to be 5% of the total number of observations used for
tree estimation.
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Figure 1: Simulated heterogeneous impulse responses and relation to X

The figure plots heterogeneous impulse responses over one run of simulations for regressions (14) and
(15) as well as HLPs in (2) for different values x of Xit. Shown are x values in between percentiles
10th − 90th. Shaded areas are 90% confidence bands. Results for T = 30 and N = 50T .
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in capturing general responses is the main advantage of HLPs over regression specifications.

Figure 1 illustrates these findings. It plots heterogeneous impulse responses for a single

repetition over 500 values of individual characteristics Xit for both regressions with and

without power terms, as well as HLPs, assuming T = 30 and N = 50T . At h = 0, note that

HLPs recover the shape of the true process with good coverage for all DGPs. The regression

with power terms also performs well, especially in the linear and quadratic cases as expected,

although it performs less well than HLPs for the piecewise linear DGP.

Second, for horizons greater than 0 (4, 8 and 12), all models show comparable accuracy, yet

they encounter difficulties in accurately capturing the true signal, particularly as h increases.

This is by design expected since additional interaction terms are present in the DGP in (13)

for h > 0 which are not taken into account by the estimating equations in (2), (14) and (15).

In this way, the estimating equations are consistent with empirical practice, where generally

only one interaction term is included in the local projection. Relative to the regression

benchmarks, HLPs present better coverage while keeping similar accuracy, but present larger

confidence intervals.

Third, the relative performance of HLPs does not seem to be significantly affected by

changes in sample sizes. As the sample size decreases (in terms of either T or N), uncertainty

around HLPs estimates increases, although the concurrent increases in errors and coverage

rates are relatively smaller. The same observation follows for the regressions although these

have smaller confidence intervals.

Fourth, HLPs appear to slightly overcoverage, but this behaviour tends to disappear

asymptotically as the variance decreases. I note that the uncertainty of HLPs’ estimates can

be somewhat sensitive to the choice of tree depth, governed by the parameter k, the minimum

number of observations it at the subsample level. In simulations, I fix k to be 5% of the total

number of observations used for tree estimation. As k increases, we exchange precision for a

decrease in variance, which in turn tends to decrease the empirical coverage rates.
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5 Firms’ financial conditions and the transmission of mon-

etary policy

In this section, I revisit the empirical application in Ottonello and Winberry (2020) on

the role of financial heterogeneity in the investment response of firms to monetary policy

shocks. Specifically, I focus on estimating the dynamic effects of monetary policy shocks

on firm investment for firms facing different financial conditions. This can be implemented

by estimating heterogeneous local projections as in (2), and then evaluating the impulse

responses in (3) at different levels of firms’ financial conditions Xi,t−1. This methodology

generalizes equation (4) in Ottonello and Winberry (2020) (page 2480) in the context of

HLPs.

As in Ottonello and Winberry (2020), Yi,t+h is set as firm investment h horizons after the

shock, measured as the cumulative growth rate of capital stock, or ∆logki,t+h = logki,t+h −

logki,t−1 for h = 0, ..., H, where kit is capital stock at the end of period t. Wt is a monetary

policy shock based on the high-frequency series in Gurkaynak et al. (2005) and Gorodnichenko

and Weber (2016), in which shocks are identified by movements in the current-month fed

funds futures around monetary policy announcements. The shock is normalized such that

positive values represent interest rate decreases (and transformed to decimal points). Xi,t−1 is

a proxy for firms’ default risk, and can be either the leverage ratio (total debt to total assets),

or a measure of distance-to-default, which estimates the probability of default by comparing

the firm’s value to its debt (Gilchrist and Zakrajsek, 2012). As in the original paper, Xi,t−1

is demeaned with respect to the average value of firm i over time, and then standardized

over the entire sample. Finally, the vector of controls Cit may include, depending on the

specification, (i) firm controls, comprising lagged sales growth, total assets, current assets to

total assets ratio and default risk, (ii) an interaction of default risk and last quarter GDP

growth, (iii) time-sector, quarter-sector and fiscal-quarter dummies, and (iv) macro controls,

comprising four lags of GDP growth, inflation and unemployment. Firm-level data are from

quarterly Compustat, and covers the universe of U.S. nonfinancial firms. The number of

firms in the sample is N ≈ 5000 and the average number of time periods is T ≈ 25.
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5.1 Baseline estimates suggest heterogeneous responses

Table 3 reports the impact responses of investment to monetary policy, and replicates table

III in Ottonello and Winberry (2020) (columns 2-5). Columns 5-8 extend the baseline results

to include more lags of firm-level Avariables, which is discussed in Section C in the appendix.

The specification includes an interaction of the shock Wt with a (lagged) proxy for default

risk Xi,t−1, either leverage or distance-to-default, to capture heterogeneous effects, and is as

follows

∆logkit = a (Xi,t−1 ×Wt) + b Wt +
P∑

j=1

γj Cj,it + δi + uit. (16)

The estimates suggest that more risky firms, as measured by indebtedness and probability

of default, tend to respond less to monetary policy. Specifically, column 1 reports that

following a 100 bps decrease in interest rates, the investment rate is estimated to be 70 bps

smaller for firms that are one standard deviation more indebted than the average firm in the

sample. Similarly from column 2, we see that firms that are one standard deviation more

distant to default than the average firm are estimated to present an investment rate 120 bps

bigger following the same 100 bps base rate decrease. Note that the inclusion of both leverage

and distance-to-default in the equation renders leverage insignificant (columns 3, 4, 7 and 8).

The coefficient of the shock alone in column 4 indicates that the average investment rate is

around 2.5 percentage points higher after an expansionary 100 bps monetary policy shock.

This is economically significant given the average investment rate in the sample of 0.4%.

Dynamics. Now we extend (16) to horizons greater than 1, and estimate local projections

of the form

logki,t+h− logki,t−1 = ah (Xi,t−1×Wt)+bh Wt+
P∑

j=1

γh
j Cj,it+δhi +ui,t+h, h = 0, ..., H. (17)

The above specification can be seen as a dynamic extension to the specification in column

4 of Table 3 except that either leverage or distance-to-default enter the equation, but not

both (that is, Xi,t−1 represents either one variable or the other and Cit includes either one or

the other). The left-hand side variable is also changed to reflect investment rates at longer
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Table 3: Impact response of investment to monetary policy

Replication from OW Lag-augmented controls

(1) (2) (3) (4) (5) (6) (7) (8)

leverage × shock −0.73∗∗ -0.19 -0.23 -0.48 -0.25 -0.17

(0.29) (0.39) (0.61) (0.35) (0.56) (0.58)

dist-to-def × shock 1.20∗∗∗ 1.10∗∗∗ 1.25∗∗ 0.84∗∗ 0.72∗∗ 1.04∗∗∗

(0.40) (0.39) (0.50) (0.34) (0.32) (0.34)

shock 2.49∗∗∗ 1.40∗∗∗

(0.62) (0.40)

Observations 208,695 143,185 143,185 113,817 161,419 107,178 107,178 107,179

R2 0.127 0.144 0.145 0.153 0.191 0.196 0.197 0.189

Firm controls yes yes yes yes yes yes yes yes

Lag-aug controls no no no no yes yes yes yes

Time sector FE yes yes yes no yes yes yes no

Macro controls no no no yes no no no yes

This table reports estimates of ∆logkit = a (Xi,t−1 ×Wt) + b Wt +
∑P

j=1 γj Cj,it + δi + uit, where kit is
capital stock, Xi,t−1 = {leverage, distance-to-default}, Wt is the monetary policy shock normalized such
that positive values represent rate decreases (in decimal points). The vector Cit includes firm controls (one
lag of sales growth, total assets, current assets to total assets ratio and leverage and/or distance-to-default),
time-sector dummies if indicated in “Time sector FE”, otherwise quarter-sector dummies, fiscal-quarter
dummies, an interaction of Xi,t−1 and previous-quarter GDP, macro controls (four lags of GDP growth,
inflation and unemployment), and lag-augmented controls (four lags of firm controls and four lags of the
dependent variable). These results replicate table III in Ottonello and Winberry (2020) (OW), in columns
(1) to (4), and extend the control set to include more lags of firm-level variables, in columns (5) to (8).
Standard errors in parenthesis are two-way clustered by firms and time.
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Figure 2: Standard local projections and heterogeneity

The figure presents the heterogeneous impulse responses b̂h,LP (x) of firm investment following a
100bps decrease in the fed funds rate for low and high risk firms according to the standard LPs in
(17). Each panel represents a distinct specification in which either leverage or distance-to-default is
considered, but not both. Shaded areas are 68% error bands, where standard errors are two-way
clustered by firm and time.

horizons.

Figure 2 shows heterogeneous impulse responses according to (17) evaluated at the 5th

and 95th percentiles of leverage (left) and distance-to-default (right). The plots confirm the

previous findings that low risk firms react more to the shock on impact, and highlight that

this heterogeneity is persistent until at least eight quarters after the shock. In fact, over time

low risk firms significantly increase their investment after an expansionary shock, while high

risk firms significantly decrease investment, especially at larger horizons.

5.2 Heterogeneity from the perspective of HLPs

Heterogeneous local projections estimate the equivalent of equation (2) tailored to the current

application,

logki,t+h − logki,t−1 = bh(Xi,t−1) Wt +
P∑

j=1

γh
j Cj,it + δhi + ui,t+h, h = 0, ..., H. (18)
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Figure 3: Heterogeneous local projections

The figure presents the heterogeneous impulse responses b̂h(x) of firm investment following a 100bps
decrease in the fed funds rate for low and high risk firms according to (2). Each panel represents a
distinct specification in which either leverage or distance-to-default is considered, but not both. For
the estimations, the number of trees in the forest is |T | = N ≈ 5000, and k = 2500. Shaded areas
are 68% error bands, where standard errors are one-way clustered by firm.

The variables included in Cit are the same as in (17), and here again Xi,t−1 represents either

leverage or distance-to-default, not both.

Figure 3 shows heterogeneous impulse responses from the perspective of HLPs, in a similar

vein to Figure 2 for the standard local projection. I note that unlike for the standard case

where standard errors are two-way clustered by firm and time, standard errors from HLPs

can be interpreted as clustered by firm only, as discussed in Section 3.1. The estimates are

consistent with Figure 2 in that low risk firms react more to the shock on impact, but differ on

the persistence of the heterogeneity where here differences in responses across firms fade away

after about four quarters after the shock. Note in particular that responses according to the

standard LP are more dissimilar between low and high risk firms than they are according to

HLPs, especially at medium and long horizons. This point is further discussed below. Figure

3 also shows that high risk firms respond insignificantly (leverage) or have responses very

close to insignificance (distance-to-default), while low risk firms present a positive significant

response to policy on impact, with a semi-elasticity of around 4 for leverage and 4.5 for

distance-to-default. As also evident from the standard local projection, note that high risk

firms present a negative significant response to policy at long horizons.
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The comparison between the standard LP and HLPs can be made more evident with a

closer inspection of the impulse responses over a finer grid of percentiles than those available

in Figures 2 and 3.13 These are available in Figures 4 and 5 for HLPs for short (0, 1, 2, 3) and

long (9, 10, 11, 12) horizons respectively. Note that for both risk measures the effect of the

shock is generally constant (and close to insignificance for h > 0) for most of the distribution,

but increases for firms at approximately the 25th percentile of leverage or below, or firms

at the 75th percentile of distance-to-default or above. This effect is mostly visible up to

the second quarter after the shock, and estimates become insignificant for all percentiles at

horizon 3 and beyond. One exception is the impact response with respect to leverage, which

is approximately linear, although we do observe a more pronounced response for firms below

the 25th percentile as well.

Importantly, these differences in responses across quartiles of the data cannot be detected

by the standard LP. Figures B.2 and B.3 in the appendix show the results for the standard

case according to (17). As expected, note that heterogeneity varies linearly across firms.14

This linearity restriction implies that whenever heterogeneity is detected on average in the

sample, low and high risk firms will tend to exhibit quite distinct responses. This is usually

what is implied by a standard regression with an interaction term as in (17), hence implicit

from the empirical analysis in Ottonello and Winberry (2020). The main contribution of

HLPs in this context is precisely to relax this restriction and allow the response to vary “freely”

across the distribution of firms. Specifically in this application, it allows the researcher to

detect the presence of the aforementioned threshold in the level of firm risk (approximately

the first quartile of leverage and the third quartile of distance-to-default) beyond which

monetary policy appears to be less effective.

At longer horizons, shown in Figure 5, a different nonlinearity appears; responses are

more muted for medium-level firms than for firms that lie either in low or high percentiles

of the financial position. Note the inverse U-shape of the responses with respect to both

measures. This nonlinearity, again, cannot be detected by the standard LP (see Figure B.3

13Figure B.1 in the appendix presents HLPs point estimates at four different percentiles of leverage and
distance-to-default.

14I note that in Figures B.2 and B.3 the graphs do not appear strictly linear because the conditioning
variables, leverage and distance-to-default, are not uniformly distributed and can be more closely represented
as Gaussian variables.
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Figure 4: HLPs and the cross-section variation, Short horizons

The figure presents the impulse responses b̂h(x) of firm investment following a 100bps decrease
in the fed funds rate for firms at a fine grid of percentiles of leverage and distance-to-default, at
quarters h = 0, 1, 2 and 3 after the shock. These are two distinct specifications in which either
leverage or distance-to-default is considered. For the estimations, the number of trees in the forest
is |T | = N ≈ 5000, and k = 2500. Shaded areas are 68% error bands, where standard errors are
one-way clustered by firm.

35



Figure 5: HLPs and the cross-section variation, Long horizons

The figure presents the impulse responses b̂h(x) of firm investment following a 100bps decrease
in the fed funds rate for firms at a fine grid of percentiles of leverage and distance-to-default, at
quarters h = 9, 10, 11 and 12 after the shock. These are two distinct specifications in which either
leverage or distance-to-default is considered. For the estimations, the number of trees in the forest
is |T | = N ≈ 5000, and k = 2500. Shaded areas are 68% error bands, where standard errors are
one-way clustered by firm.
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in the appendix), where the effect of the shock increases monotonically from high to low risk

firms. We do observe however consistency between LPs and HLPs’ estimates in that high risk

firms tend to present significantly negative responses of investment at long horizons, which is

mostly visible from the distance-to-default specification.

Relation to theory. These results highlight an important nonlinearity in the transmission

of monetary policy with respect to default risk: short term effects on investment are mostly

significant for firms below a certain threshold in the level of leverage or above a certain

threshold in the level of distance-to-default, while beyond this threshold the effect of monetary

policy is essentially insensitive to the level of default risk. According to the estimations, this

threshold is situated around the best quartile of the distribution of default risk (the first

quartile of leverage or the third quartile of distance-to-default).

This observed nonlinear effect is consistent with models of heterogeneous firms that

incorporate constraints to capital reallocation (Khan and Thomas, 2013) and borrowing

issuance costs (Jeenas, 2019). Firms with low enough net worth do not find it optimal to

issue new debt given the initial cost or tighter credit constraints, which implies that a change

in borrowing costs - triggered by a monetary policy shock for example - will not have a

significant effect on the investment decisions of these firms. Alternatively, firms that actively

participate in the credit market (and consequently do not face a binding borrowing constraint)

are more responsive to changes in market interest rates and borrowing spreads. According

to theoretical predictions in Ottonello and Winberry (2020), this later group of firms face

smaller credit spreads following a decrease in interest rates, which in turn flattens the slope

of their marginal cost curve and induces a change in investment. As the level of net worth

increases, credit spreads decrease further and the induced response from policy is larger. This

behaviour is consistent with the estimates in Figure 4 for firms with high enough net worth,

where here we regard leverage and distance-to-default as proxies for net worth.

Perhaps the most striking result is the estimated threshold itself, which implies that

for approximately three quarters of firms in the sample the semi-elasticity of investment is

insensitive to financial conditions in the short term. This result is consistent with theoretical

predictions from Khan and Thomas (2013) in that frictions to capital reallocation create
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an heterogeneous investment behaviour with respect to the strength of credit constraints.

According to their model, the majority of firms may not engage in new borrowing due to

binding constraints or even the prospect that these constraints might bind in the future. In

the same line, Leary and Roberts (2005) estimate that 72% of the time firms do not adjust

their capital structure due to fixed costs. This suggests that at least for a significant period

of time firms tend to be inactive in reballancing their portfolios and consequently in engaging

in new investment, which corroborates to the economically relevant threshold estimated in

this paper.

6 Concluding remarks

This paper introduces heterogeneous local projections (HLPs), a non-parametric method for

the estimation of impulse responses based on random forests, to estimate the transmission

of monetary policy shocks to firm investment. The method is useful to uncover possible

nonlinearities in the transmission of monetary policy, since it does not impose any assumptions

on how the transmission mechanism varies across firms. Using data on US non-financial

firms until the Great Recession, my estimates suggest that there exist a threshold in the level

of firm risk above which monetary policy is much less effective, particularly for middle-risk

firms.

HLPs can be thought as a non-parametric generalization of local projections that nests

several linear and nonlinear local projection specifications, and can be used with several

common identification schemes in macroeconomics. Unlike other non-parametric techniques,

HLPs can be estimated in high dimensions as well. In the context of the investment channel of

monetary policy discussed in this paper, this would allow conditioning the impulse responses

to monetary shocks on a large pool of firms’ characteristics, possibly shedding light on the

relevant transmission channels. I do not however explore the high dimension capability of

HLPs in this paper and leave it for future work.
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A Derivation of equation 9

Suppose we grow |T | trees according to the methodology described in Section 3. Define

LT (x) as the set of observations it that are in the same subsample of x according to tree T ,

and let b̂T (x) denote the prediction of tree T at x. (In this section I omit the h superscript

to simplify the notation). As in Breiman (2001), the forest estimator is defined as the average

of all tree predicitons in the ensemble,

b̂(x) =
1

|T |
∑
T

b̂T (x), (A.1)

where the prediction of tree T at x is the impulse response from (1) in the subsample

associated with x, denoted {it : Xi,t−1 ∈ LT (x)}. The prediction of tree T can then be

written as

b̂T (x) =

1

|LT (x)|
∑

{it:Xi,t−1∈LT (x)}

(
Yi,t+h − Ȳi

) (
Wit − W̄i

)
1

|LT (x)|
∑

{it:Xi,t−1∈LT (x)}

(
Wit − W̄i

)2

=

∑
it

1 [Xi,t−1 ∈ LT (x)]

|LT (x)|
(
Yi,t+h − Ȳi

) (
Wit − W̄i

)
∑
it

1 [Xi,t−1 ∈ LT (x)]

|LT (x)|
(
Wit − W̄i

)2
(A.2)

where 1 is the indicator function and |LT (x)| denotes the number of observations in partition

LT (x). In (A.2), I also rely on the prior orthogonalization of both the dependent and shock

variables with respect to the set of controls as described in the main text.
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Replacing (A.2) in (A.1), we have

b̂(x) =

∑
it

1

|T |
∑
T

1 [Xi,t−1 ∈ LT (x)]

|LT (x)|
(
Yi,t+h − Ȳi

) (
Wit − W̄i

)
∑
it

1

|T |
∑
T

1 [Xi,t−1 ∈ LT (x)]

|LT (x)|
(
Wit − W̄i

)2

=

∑
it

αit(x)
(
Yi,t+h − Ȳi

) (
Wit − W̄i

)
∑
it

αit(x)
(
Wit − W̄i

)2
(A.3)

where we define αit(x) ≡ 1
|T |

∑
T 1 [Xi,t−1 ∈ LT (x)] /|LT (x)| as the weights (i.e. kernel)

implied by the forest model.

B Additional results for Section 5

Figure B.1: HLPs and the distribution of impulse responses

The figure presents the heterogeneous impulse responses b̂h(x) of firm investment following a 100bps
decrease in the fed funds rate at different levels of firm risk according to leverage and distance-to-
default. Each panel represents a distinct specification in which either leverage or distance-to-default
is considered, but not both. No uncertainty bands are plotted to facilitate visualization. For the
estimations, the number of trees in the forest is |T | = N ≈ 5000, and k = 2500.
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Figure B.2: Standard LPs and the cross-section variation, Short horizons

The figure presents the impulse responses according to standard LPs b̂h,LP (x) of firm investment
following a 100bps decrease in the fed funds rate for firms at a fine grid of percentiles of leverage
and distance-to-default, at quarters h = 0, 1, 2 and 3 after the shock. Left and right panels represent
distinct specifications in which either leverage or distance-to-default is considered, but not both. For
the estimations, the number of trees in the forest is |T | = N ≈ 5000, and k = 2500. Shaded areas
are 68% error bands, where standard errors are two-way clustered by firm and time.
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Figure B.3: Standard LPs and the cross-section variation, Long horizons

The figure presents the impulse responses according to standard LPs b̂h,LP (x) of firm investment
following a 100bps decrease in the fed funds rate for firms at a fine grid of percentiles of leverage and
distance-to-default, at quarters h = 9, 10, 11 and 12 after the shock. Left and right panels represent
distinct specifications in which either leverage or distance-to-default is considered, but not both. For
the estimations, the number of trees in the forest is |T | = N ≈ 5000, and k = 2500. Shaded areas
are 68% error bands, where standard errors are two-way clustered by firm and time.
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Figure B.4: HLPs and the distribution of impulse responses, Lag-augmented version

The figure presents the heterogeneous impulse responses b̂h(x) of firm investment following a 100bps
decrease in the fed funds rate at different levels of firm risk according to leverage and distance-to-
default. The set of controls is similar to that in specification from column 8 in Table 3. Each panel
represents a distinct specification in which either leverage or distance-to-default is considered, but
not both. No uncertainty bands are plotted to facilitate visualization. For the estimations, the
number of trees in the forest is |T | = N ≈ 5000, and k = 2500.

C Robustness

Lag-augmented HLPs. It is common practice in local projection estimation to compute

autocorrelation-robust standard errors due to the presence of serial correlation in the residuals.

Although the method of HLPs does not account directly for this adjustment, it allows for

a very simple recipe that obliviates the need for this correction. Olea and Plagborg-Moller

(2021) show that one can simply augment the regression of interest with lags of all the

variables in the system and disregard the adjustment for serial correlation. The results in the

previous section do not involve lag-augmented regressions to allow for the comparison with

results in the literature. Here I show that the same qualitative results from HLPs can be

obtained with lag-augmented regressions.

I augment the vector of controls to include four lags of firm-level controls (instead of

only one lag as before), as well as four lags of the dependent variable. It is interesting to

first analyse the baseline results on impact for this lag-augmented case, which are displayed
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Figure C.1: Heterogeneous local projections, Lag-augmented version

The figure presents the heterogeneous impulse responses b̂h(x) of firm investment following a 100bps
decrease in the fed funds rate for low and high risk firms according to (2). The set of controls is
similar to that in specification from column 8 in Table 3. Each panel represents a distinct specification
in which either leverage or distance-to-default is considered, but not both. For the estimations, the
number of trees in the forest is |T | = N ≈ 5000, and k = 2500. Shaded areas are 68% error bands,
where standard errors are one-way clustered by firm.

in columns 5-8 of Table 3. A few points to note. When controlling for more lags, there

is less evidence of heterogeneity. Specifically, column 5 shows that there is no evidence of

heterogeneous responses with respect to leverage, while in column 6 we see that there is less

evidence of heterogeneity with respect to distance-to-default, although the estimate is still

positive and significant. The coefficient of the shock alone (column 8), which represents the

average impact of the shock on investment, is positive and significant, but here again smaller

than in the baseline case.

Figure C.1 displays HLPs’ impulse responses for leverage and distance-to-default for the

lag-augmented version. We see that HLPs’ responses on impact indicate less heterogeneity

compared to the non lag-augmented case (Figure 3), in particular for the leverage specification,

consistent with the results from Table 3. Figure B.4 shows a more granular distribution of

responses across percentiles, where it is more visible that the lag-augmented specification

entails less heterogeneity, especially for the leverage version (note the comparison with the

original specification in Figure B.1). Nonetheless, we do observe differences between low and

high risk firms as before. For example, firms at the 95th percentile of distance-to-default are

estimated to have a semi-elasticity of investment of around 3.7, while this number decreases
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to roughly 1 for those at the 5th percentile.

Sensitivity to k. The parameter k governing tree depth is usually important in determining

the properties of the forest estimator. Several works interested in the consistency of random

forests assume k → ∞ as the total number of observations increases, or equivalently, a lower

bound for k seems to be necessary to achieve consistency in practice (e.g. Biau, 2012; Scornet

et al., 2015; Wager and Walther, 2015; Davis and Nielsen, 2020). Although the honesty

property (described in Section 3.1) in principle permits trees to grow deep (it allows for low

values of k) while maintaining consistency, it could be informative to analyse the sensitivity

of the impulse response estimates for different values of k.

Figure C.2: Sensitivity to tree depth k

HLPs impulse responses for different values of k, the minimum number of observations it imposed at
the subsample level. The specification conditions the impulse responses to depend on distance-to-
default only, and are with respect to low (95th percentile) and high ((5th percentile) risk firms. For
the estimations, the number of trees in the forest is |T | = N ≈ 5000. Shaded areas are 68% error
bands.

Figure C.2 shows HLPs estimates with respect to distance-to-default for k = {500, 1000,

1500, 2000, 2500, 3000}. These roughly correspond to assuming that k is {2.5%, 5%, 7.5%,

10%, 12.5%, 15%} of the total number of observations used for tree estimation respectively. I

note that results reported previously use k = 2500. Overall, it is reassuring to confirm that
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the estimated responses are not significantly different when tree size changes. In particular,

especially for k ≥ 1000, point estimates at short horizons are very similar and surprisingly

stable as we vary k. However, for very small values of k (for very large trees) the estimates

become more unstable while the uncertainty bands increase as a result. What threshold to

use is in fact an empirical matter. On the one hand, bigger trees are less stable, and on the

other, smaller trees are less able to properly identify the underlying heterogeneity, where

in the limit the estimate becomes the average impulse response (case of one single sample

with no splits). In this application, it seems safe to use any k ∈ [1000, 3000] as the respective

point estimates are stable in this interval, while maintaining relatively big trees to pick up

the desired heterogeneity in the responses.
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